

Dan Baxter – PA Senior Sales Engineer dan.baxter@opengear.com 814-933-9829

# INTRODUCTION TO CELLULAR ROUTING AND OOB

#### Why this is important...

- Cellular adoption is a huge growth area
- There are now more cell phones in the USA than people
- People are now expecting to access the Internet over their cell
- Vendors and Carriers are offering very affordable options
- You need to know the realities, security issues, costs, and management options in order to make the best decisions about adopting this emerging technology

#### What are we talking about exactly...

- <u>Cellular Routing</u> refers to network devices that use either an integrated cellular modem or an external cellular modem to provide an IP network path using an IP route provided by a cellular carrier
- <u>Cellular Out-of-Band (OOB)</u> refers to using either an integrated cellular modem or an external cellular modem to provide management access to an OOB device using an IP route provided by a cellular carrier

## Cellular Routing vs. Cellular OOB

- Both share the idea of primary and failover interfaces
- Both share similar security concerns
- Both share the same carrier IP plan options

- Data plan costs differ because the usage varies
- Primary application of cellular enabled OOB is to provide access to a single remote management device – not pass traffic

#### **Embedded Cellular Routing form factors**

Router Modules



External Modems



Embedded Cellular
 Consumer



Industrial



## **Cellular Routing Strategies - HA**



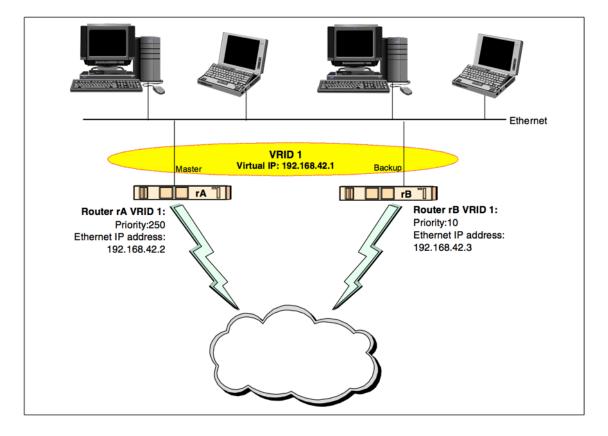
### **Cellular Routing Strategies**

HA – cellular router becomes the default gateway

```
Primary Router --- WAN
/
LAN ---Virtual IP
\
Backup Router --- WAN
```

 IP Pass Thru – cellular router is a a secondary path for the primary router

```
LAN ---Primary Router --- WAN
\
Backup Router --- WAN
```


Standalone – cellular router is the only router

### **Cellular Routing Strategies - HA**

- High Availability Model HA protocols handle failover
  - HA Failover pairs the backup router with the primary site router
  - When the primary router fails or WAN connectivity fails, the redundancy protocol selects the backup router to become the gateway
  - Systems continue to be able to reach the WAN, transparently
  - The backup router continues to be reachable via its WAN connection, and an always up LAN alias.

## Cellular Routing Strategies – HA & VRRP

• VRRP is a commonly used protocol in cellular backup solutions when the cellular router is separate from the primary router



## Cellular Routing Strategies – IP Pass Thru

- IP Pass Thru primary router handles failover
  - Turns the backup router into a "modem" for the primary router
  - The primary router handles all routing functionality including failover to the backup cellular connection in the event of a WAN connectivity failure

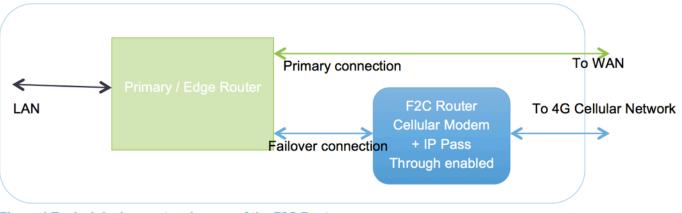



Figure 1 Typical deployment and usage of the F2C Router

## Cellular Routing Strategies – Best Practices

#### Challenges:

- Different modes address different situations/vulnerabilities
- IP Pass Thru depends on primary router staying active
  - Does not protect against primary router failure
- VRRP may require re-configure of remote site routers

#### Best Practices:

- Design around what you consider the most likely failure
  - Router failure?
  - WAN link failure?



## **Cellular OOB form factors**

• Embedded Cellular OOB – cell inside



OOB with External Cellular Modems



#### External Modems

- Works well for legacy devices that do not have cellular support
- Adds a point of failure
- Vendor support for 3<sup>rd</sup> party devices may be limited





#### Embedded

- Reduces points of failure
- Recently engineered hardware more likely compatible with cellular
- Well integrated into feature set
- Matched to carriers cannot be field changed



- Products with a primary design focus around OOB
  - RJ-45 form factors complete OOB feature set
  - Failover handling
  - Alerting and notification leverages the cellular modem





- Products with OOB as an add-on
  - DB9 form factor subset of OOB features
  - Re-purposing the local console port
  - Usually a lower port count
  - Meant for remote sites more than Data Centers



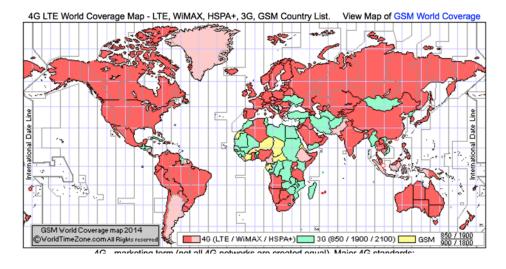
#### IP Failover to Cellular Interface

- Common triggers
  - PING
  - Interface state change
- Interface state handling
  - Active all the time vs. dormant
  - Default route handling
  - Per-Interface-Routing

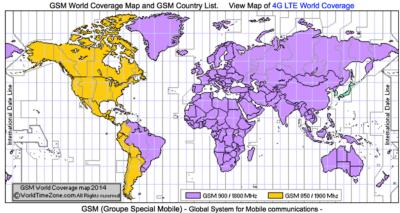
| Failover                   |                                                                                                             |  |  |  |  |  |  |  |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Failover Interface         | Internal Cellular Modem (cellmodem01) +                                                                     |  |  |  |  |  |  |  |  |
|                            | A device to fail to in case of outage. Devices must be configured and enabled for failover to work.         |  |  |  |  |  |  |  |  |
| Dormant Failover Interface |                                                                                                             |  |  |  |  |  |  |  |  |
|                            | If the failover interface should stay active at all times, only being routed through in failure situations. |  |  |  |  |  |  |  |  |
| Primary Probe Address      |                                                                                                             |  |  |  |  |  |  |  |  |
|                            | The address of the first peer to probe for connectivity detection.                                          |  |  |  |  |  |  |  |  |
| Secondary Probe Address    |                                                                                                             |  |  |  |  |  |  |  |  |
|                            | The address of the second peer to probe for connectivity detection.                                         |  |  |  |  |  |  |  |  |
|                            |                                                                                                             |  |  |  |  |  |  |  |  |

## Cellular OOB Strategies – Best Practices

- Challenges:
  - Vendor focus influences form factor
  - Legacy devices may require external cell modems
    - Vulnerability and cost considerations
  - Carrier specific


#### Best Practices:

- Do you need cellular as an add-on or integrated?
- Do you need cellular across high port densities?
- Avoid external dongles
- Identify VPN requirements are they supported?
- Know the focus of your vendor correlates to the level of support they will be able to provide
- Does your device have sufficient security for a Static IP?


#### **Cellular Considerations**



- Bands and wavelengths
  - There is no one-size-fits-all yet....
  - Wavelength and Band will vary by country
  - USA is very carrier specific
  - Internationally more about wavelength than Carrier
  - Modems are matched to a specific wavelengths/bands



ITF



GSM

#### Bands and wavelengths - USA

- Devices are usually matched to carriers for the most part
- Some devices can support multiple carriers but there is a cost increase
  - Different Carriers support different bands
    - ATT Frequency Bands: LTE 700 MHz (Band 17)
    - Verizon Frequency Bands: LTE 700 MHz (Band 13)
  - Carriers certify/police devices allowed on their networks
  - They hand **out IMEI#s** that allow that device on their network
  - An ATT SIMM card will not work in a device certified for Verizon
  - You order devices by Carrier and 3G or LTE
- Internationally you have more flexibility
  - One modem/SIMM may work in several countries with several carriers
  - International Frequency Bands: LTE 800/900/1800/2100/2600 MHz
  - You order by 3G or 4G but not carrier

- 3G vs. 4G USA differences in speed and coverage
  - 4G is also called LTE
  - 4G devices can fail over to 3G if 4G is not available
  - 4G usually has better coverage (10 db in some cases)
  - 4G line speeds = Upload 50 Mbps/Download 100 Mbps
  - 3G line speeds = varies Upload 1.8 Mbps/Download 3.1 Mbps
  - 3G is more common internationally
  - 4G is gaining adoption internationally
  - Future proof? XLTEW?

- Matching countries, carriers and equipment
- Bands and wavelengths USA WIKI
- Hopefully the vendor has made this process easy

#### Frequency bands recommended by ITU (UMTS) [edit]

Main article: UMTS frequency bands

ITU-R approved in June 2003 the following bands to the terrestrial Mobile telecommunication IMT-2000: 806–960 MHz, 1,710–2,025 MHz, 2,110–2,200 MHz and 2,500–2,690 MHz.

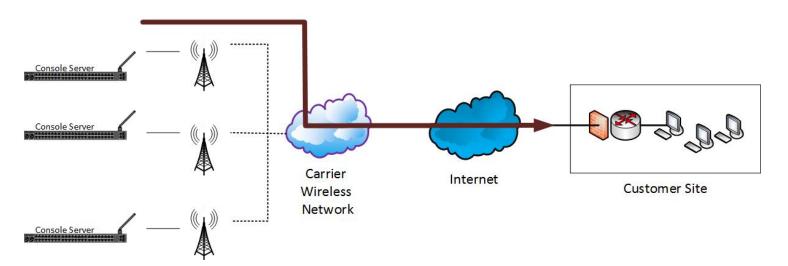
|                                              | ι       | JHF Voice | Frequenci            | es       | 3G UHF Frequency / Band<br>name |                      |          | 4G UHF Frequency / Band number |         |         |         |                      |          |          | 3G<br>Technology |              | 4G<br>Technology |     |
|----------------------------------------------|---------|-----------|----------------------|----------|---------------------------------|----------------------|----------|--------------------------------|---------|---------|---------|----------------------|----------|----------|------------------|--------------|------------------|-----|
| Carrier                                      | 800 MHz | 850 MHz   | 1700 MHz<br>2100 MHz | 1900 MHz | 850 MHz                         | 1700 MHz<br>2100 MHz | 1900 MHz | 700 MHz                        | 750 MHz | 800 MHz | 850 MHz | 1700 MHz<br>2100 MHz | 1900 MHz | 2500 MHz | GSM<br>HSPA+     | CDMA<br>EVDO | WiMax            | LTE |
|                                              |         |           |                      |          | CLR                             | AWS                  | PCS      | 12,17                          | 13      | 26      | 5       | 4                    | 2,25     | 41       |                  |              |                  |     |
| AT&T<br>Mobility                             | ×       | 1         | ×                    | 1        | 1                               | ×                    | 1        | 1                              | ×       | ×       | 1       | 1                    | 1        | ×        | 1                | ×            | ×                | 1   |
| T-Mobile<br>US                               | ×       | ×         | 1                    | 1        | ×                               | 1                    | 1        | ≶)*                            | ×       | ×       | ×       | 1                    | ∕>•      | ×        | 1                | ×            | ×                | 1   |
| Sprint<br>Corporation                        | 1       | ×         | ×                    | 1        | ×                               | ×                    | 1        | ×                              | ×       | 1       | ×       | ×                    | 1        | 1        | ×                | 1            | <b>√</b> †       | √§  |
| Verizon<br>Wireless                          | ×       | 1         | ×                    | 1        | 1                               | ×                    | 1        | ×                              | 1       | ×       | ×       | 1                    | ×        | ×        | ×                | 1            | ×                | 1   |
| U.S.<br>Cellular                             | 1       | ×         | ×                    | 1        | 1                               | ×                    | 1        | 1                              | ×       | ×       | 1       | ×                    | ×        | ×        | ×                | 1            | ×                | 1   |
| *Promised/ir<br>† 2010 - Cur<br>§ 2012 - Cur | rrent.  | lion.     |                      |          |                                 | 1                    |          |                                |         |         |         |                      |          |          |                  |              |                  |     |

#### United States Carrier Frequency Use [edit]

#### Bands and wavelengths – International - Asia - WIKI

Asia [edit]

| Operator                     | ¢ | Country     | ¢ | f <sup>[F 1]</sup><br>(MHz) | Band | Duplex | Launch<br>date ≑<br>Cat. 3 | Launch<br>date ¢<br>Cat. 4 | Launch<br>date<br>Cat. 6 | ¢ Notes ¢                                                                                                                                                                                                                     |
|------------------------------|---|-------------|---|-----------------------------|------|--------|----------------------------|----------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bhutan Telecom /<br>B-Mobile |   | 💉 Bhutan    |   | 1800                        | 3    | FDD    | Oct 2013                   |                            |                          | [247]                                                                                                                                                                                                                         |
| DSTCom                       |   | 🚤 Brunei    |   | 1800                        | 3    | FDD    | Nov 2013                   |                            |                          | [248][249]                                                                                                                                                                                                                    |
| Smart                        |   | Cambodia    | L | 1800                        | 3    | FDD    | Jan 2014                   |                            |                          | [248][250]                                                                                                                                                                                                                    |
| China Mobile                 |   | China       |   | 2500                        | 41   | TDD    | Dec 2013                   |                            |                          | <sup>[248][251][252][253]</sup> ( $\downarrow\uparrow$ ) 2575 – 2635 MHz<br>Accessible with devices supporting band 38 by using <i>MFBI</i> <sup>[E 1]</sup> .                                                                |
| China Telecom                |   | China       |   | 2500                        | 41   | TDD    | Feb 2014                   |                            |                          | $\label{eq:constraint} \begin{array}{l} \mbox{$^{$248](254](255)(256)$}$} (\downarrow \uparrow) 2635 - 2655 \mbox{ MHz} \\ \mbox{NOT accessible with devices supporting band 38.} \mbox{$^{$$citation needed$}$} \end{array}$ |
| China Unicom                 |   | China       |   | 2500                        | 41   | TDD    | Mar 2014                   |                            |                          | [248][257][258][259] (↓↑) 2555 – 2575 MHz<br>Accessible with devices supporting band 38. <sup>[citation needed]</sup>                                                                                                         |
| Aquafon                      |   | 🕂 Georgia   |   | (?)                         | (?)  | (?)    | Aug 2014                   |                            |                          | [260][261]                                                                                                                                                                                                                    |
| 3                            |   | 🖌 Hong Kong | g | 1800                        | 3    | FDD    | Oct 2012<br>(?)            |                            |                          | [262]                                                                                                                                                                                                                         |
| China Mobile                 |   | 🖌 Hong Kong | g | 1800                        | 3    | FDD    | Oct 2013                   |                            |                          | [263]                                                                                                                                                                                                                         |
| China Mobile                 |   | * Hong Kong | g | 2600                        | 7    | FDD    | Apr 2012                   |                            |                          | <sup>[262][264]</sup> () 2675 – 2690 MHz / (†) 2555 – 2570 MHz                                                                                                                                                                |
| China Mobile                 |   | 🖌 Hong Kong | g | 2300                        | 40   | TDD    | Dec 2012                   |                            |                          | <sup>[20][264][265]</sup> (↓↑) 2330 – 2360 MHz                                                                                                                                                                                |
| csl.                         |   | 🖌 Hong Kong | g | 1800                        | 3    | FDD    | Aug 2012                   | (?) 2013                   | Feb 2014                 | [262][266][267][268][269]                                                                                                                                                                                                     |
| csl.                         |   | 🖌 Hong Kong | g | 2600                        | 7    | FDD    | Nov 2010                   | May 2013                   | Feb 2014                 | [262][266][267][268][269] (↓) 2655 – 2675 MHz / (↑) 2535 – 2555 MHz                                                                                                                                                           |
| Genius<br>(3 & PCCW)         |   | * Hong Kon  | g | 2600                        | 7    | FDD    | May 2012                   | Jun 2013                   |                          | [262][270][271][272] (↓) 2620 – 2640 MHz / (↑) 2500 – 2520 MHz                                                                                                                                                                |
| PCCW                         |   | 🖌 Hong Kong | g | 1800                        | 3    | FDD    | Aug 2012                   |                            |                          | [262][271]                                                                                                                                                                                                                    |

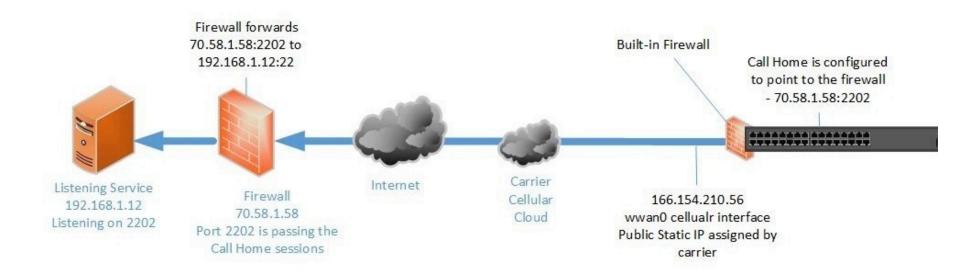

- Consumer vs. Business accounts
  - Consumer
    - Example may be the Verizon store
    - Tablet plans are commonly used for M2M
    - More suited for home use more expensive less options
    - Meant more for tablets and Hot Spots
  - Business
    - You will have a Sales Rep and SE
    - Options specifically for routing or OOB
    - Quantity discounts
    - Self-serve portals
    - Diagnosis and management visibility

- LTE Routing vs. LTE M2M plans
  - LTE Network Routing
    - Multiple device traffic
    - Designed to route all site traffic or subset during outages
    - 30GB is the smallest data allowance you can order
  - LTE M2M Device Routing
    - Historically smaller traffic usually single device only
    - 1MB is the smallest data allowance you can order
    - Priced structured around M2M/Internet of Everything
    - OOB uses M2M cellular plans to access the OOB device only
    - Sometimes used for VPN networking but usage is expected to be small

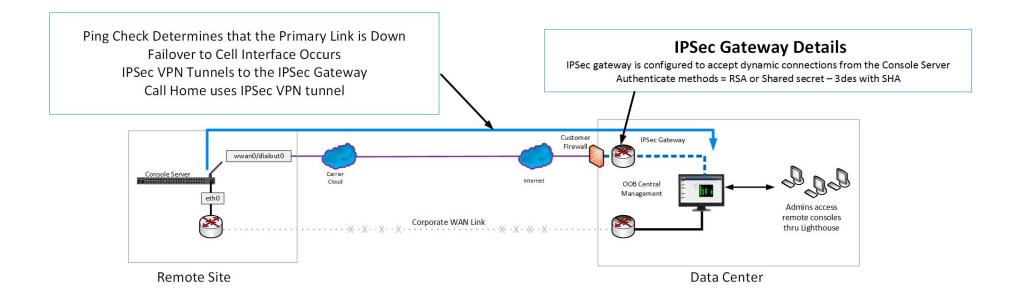
- IP Plan Options:
  - The cellular modem interface is an IP interface vs. an analog modem for example
  - The IP address is given by the carrier
  - The type of address and how it is accessed will depend on the plan
  - Three common plan types
    - Private
    - Public IP
    - Private Carrier Network

- Private IP Plans:
  - Used where traffic may be outbound POS, ATMs or telemetry device
  - The address will be a private NAT address
  - Very low cost data pools

Carrier Private IP Plan Outbound NAT Only

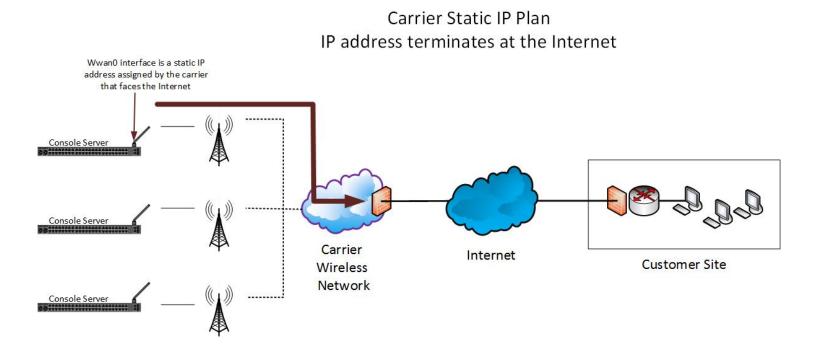



#### Plan Pros and Cons: Private NAT Address


| Plus                                                                                                            | Considerations                                                                                              |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Very cost effective                                                                                             | Cannot Browse or SSH directly to the device over the Internet                                               |
| Can be very easy to setup via<br>Lighthouse without adding<br>additional routers, firewalls<br>and VPN gateways | The console server must always<br>initiate an outbound Call Home session<br>or VPN tunnel                   |
| Requires no VPN or IPSec<br>knowledge when using<br>Lighthouse                                                  | If Call Home gateways are not<br>available you cannot access the<br>console server via the cellular network |

| Туре           | Activation | Monthly | Total (yearly)            |
|----------------|------------|---------|---------------------------|
| Private NAT IP | \$20       | \$5     | \$80 1 <sup>st</sup> Year |

- Private IP Plans: Overcoming NAT Challenges
  - Reverse SSH (Call Home)




- Private IP Plans: Overcoming NAT Challenges
  - Reverse Sessions VPN IPSEC, OpenVPN, PPTP



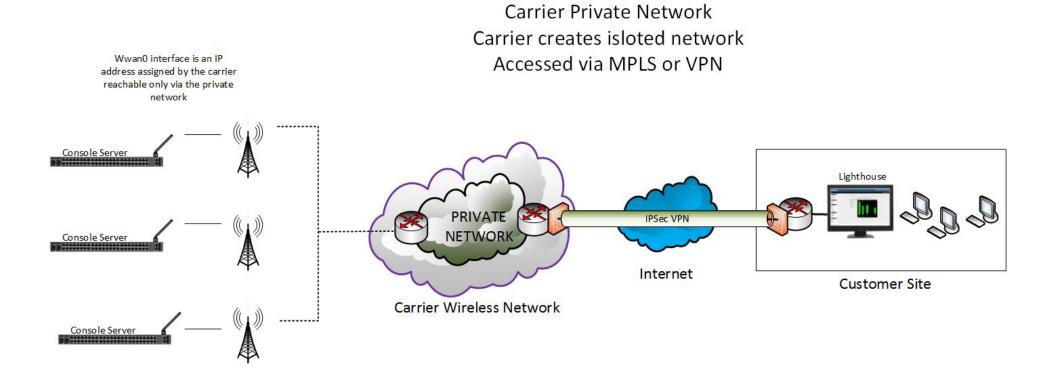
- Public IP:
  - Can be static or DHCP depends on carrier/country
  - This address faces directly on to the Internet
  - May need to leverage DDNS if the address is DHCP
  - If the Carrier notes private packets they disconnect the cellular modem – be sure to prevent bleeding
  - Routing between sites will obviously need to involve encryption
  - Well suited for road warriors if using VPN to route to remote network
  - Can leverage VPN gateways and VPN networking
  - Easy to access will need strong security
  - A one time setup fee of \$500 for each pool not each device

#### Carrier Static Public IP: Faces the Internet



• Pro – its on the Internet Con – its on the Internet

- Public Static IP Plans: Challenges
  - Security Security Security
    - Firewall rules
    - Service Control
    - Fail2Ban
    - Alerting
    - Hardened
  - Availability
    - Always up but not the DG
    - Only up when failover occurs
    - Shoulder tap
  - Make sure your vendor supports all of these


## **Carrier Considerations**

Carrier Private Network:

- Well suited for larger deployments or secure/business critical needs
- Carrier isolates all traffic between your cellular devices
- Your ingress to the private network is via VPN or MPLS
- You can route between those devices and corporate networks
  - BGP carrier required
  - IPSEC/GRE carrier required
- You can specify the IP addressing DHCP vs. Static
- Options are available to give you visibility into performance and troubleshooting
- There is a self-serve portal available to help you manage and provision
- A one time setup fee of \$500 for each pool not each device

## **Carrier Considerations**

### Carrier Private Network: Accessible only via VPN or MPLS



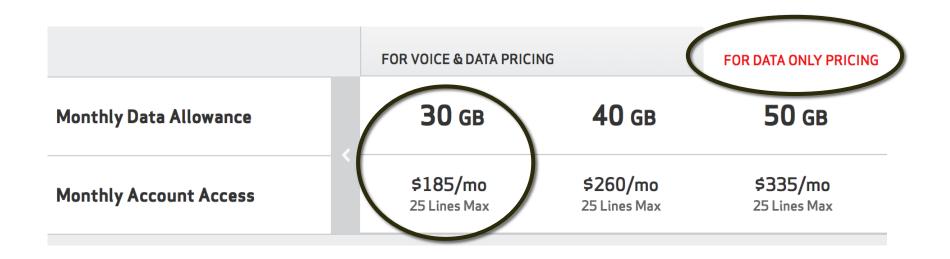
## **Carrier Considerations**

- Carrier Private Network Challenges/Benefits
  - Got VPN?
  - MPLS costs factored in?
  - What about road warriors?
  - How much management do you want? Self-serve portals?
  - Carriers are particular about the packets they see
  - No private address bleeding will disconnect the modem
  - Best option for large and secure deployments you can ping and connect to all devices – you can even specify the addressing :)

## **Cellular Plans and Bands - Best Practices**

- Choose based on your security and access needs
- Pursue business plans buy in bulk
- Get to know your reps and SEs
- Do you have a mobility group?
- Select the right plan for your access modes and security
- Ask yourself how will you access the devices
  - Road warrior maybe Static IP
  - Secure company network carrier private network may be best
- Put some data behind your data plan size estimate

## **Cellular Costs**






## **Carrier Considerations - Costs**

- LTE Routing Costs: Generally speaking.....\$185/month
  - Router plans include:
    - monthly fee
    - data GB allowance limit
    - possible overage costs





## **Carrier Considerations - Costs**

- LTE OOB Costs: Generally speaking.....\$5/month
  - M2M plans include:
    - monthly fee
    - data GB allowance limit
    - possible overage costs

| Monthly Access<br>Per Line | Shared Data<br>Allowance | 4G USB Modem /<br>Jetpack | Notebook /<br>Tablet / Netbook | Connected<br>Devices |
|----------------------------|--------------------------|---------------------------|--------------------------------|----------------------|
| \$5                        | 1 MB                     |                           |                                | 1                    |
| <sup>\$</sup> 10           | 75 MB                    |                           |                                | 1                    |
| \$30                       | 2 GB                     |                           | 1                              | 1                    |
| <sup>\$</sup> 50           | 5 GB                     | 1                         | 1                              | 1                    |
| <sup>\$</sup> 80           | 10 GB                    | 1                         | 1                              | 1                    |



# Carrier Considerations – How Much Data?

- Why M2M plans are less expensive than Routing plans
  - 100KB per remediation incident/management session
  - 1MB data pool for each device is more than enough
  - M2M telemetry sessions are very small traffic wise
- Data usage for incident response using LTE
  - SSH to the OOB device
  - cisco device is rebooted
  - auto-Response breaks into ROMmon
  - print some diagnostics
  - continue to boot & watch boot messages
  - show running-config & then disconnects

# **Cellular Security**



# **Cellular Security**

• Not your Dad's modem.....



- It is an IP interface.....the usual rules apply
- The plan will dictate the security policy

## Cellular Security – what to do

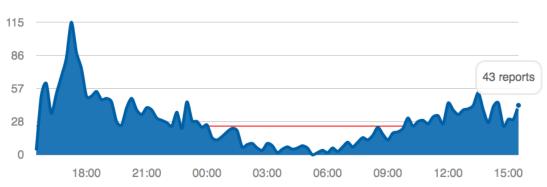
- Standard firewalling practices will apply
- Specifics of the IP plan should drive specifics of the security policy
- Consider tunneling over carrier private networks
- Consider turning off services on cell facing interfaces
- Public IP failover interfaces should be dormant until needed
- Make sure the product supports fail2ban-like mechanisms for Public IP
- Implement alerting on interface changes
- Be sure to leverage the cell interface for alerting during outages –
   NMS need to send traps out the interface



- Signal Strength
  - RSSI is the measure for LTE (-50 = very strong -98 = bad)
  - Cell phones use bars but can be a good rough estimate
  - The cellular OOB or router can be used to survey RSSI
  - Antennas can be moved up to 30 meters using low loss cables
  - Cellular amplifiers can be used

```
Output from Sierra Wireless MC7750 cell modem
```

lte-signal = strength\


-75 is OK

```
# cellctl -ils
product MC7750
technology CDMA2000 1X/CDMA2000 (1xEV-DO)
imei 990000562098071
esn 803BBE87
meid A000003566F746
serial N/A
firmware 20
mode_prefs cdma2000 1X, cdma2000 HRPD, LTE
band_prefs Band Class 0, A-System, Band Class 0, B-System, Band Class 0 AB, GSM
850 band, Band Class 1, all blocks
lte_band_prefs E-UTRA Operating Band 13
interface_aquisition_order cdma20001x, cdma2000hrpd, gsm, lte, umts
sim-status SIM Initialized
sim-lock SIM_READY
pin1-status PIN is disabled
pin1-retries-left 3
pin1-unblocks-left 10
pin2-status PIN is enabled, not verified
pin2-retries-left 3
pin2-unblocks-left 10
lte-sianal -75
network Verizon Wireless
```

### Cell Network Availability – downdetector.com

#### Problems at AT&T

### AT&T problems last 24 hours



Мар



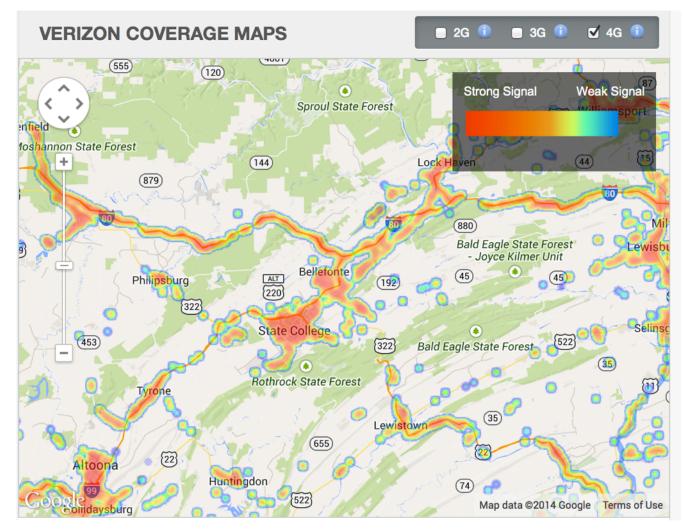
Recent reports mainly originated from: Los Angeles, Dallas, Springfield, Norcross, Chicago, Houston, Rantoul, Lafayette, Jamaica, and Boston. View on map

### P I have a problem with AT&T

### Most reported problems:

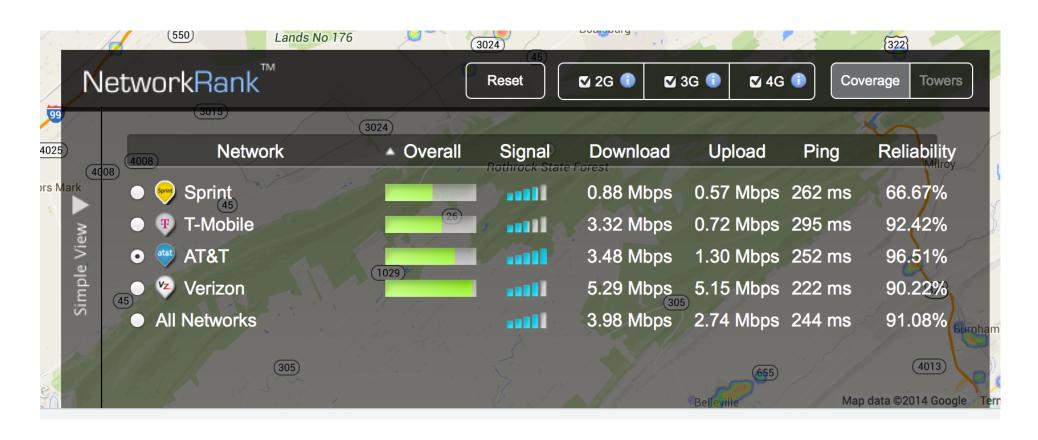
- Mobile > Internet (60%)
- Mobile > Phone (22%)
- Landline > Internet (16%)

### 17 September: Problems at AT&T


Check past issues

### **Resolved issues:**

- 16 September: Problems at AT&T
- 16 September: Problems at AT&T
- 15 September: Problems at AT&T




Cell Network Availability – OpenSignal





Cell Network Availability – OpenSignal



## **Deployment Considerations – Best Practices**

• Site survey - my experience....

- 4G has better coverage significantly in some cases
- Cell phones can be conservative don't have dual antennas
- Being able to move the antenna has made a big difference in some installs
- Antennas are better outside the racks

# **Deployment Considerations – Best Practices**

Site survey – tools
 Smartphone cell strength icons – good – usually

Better - G Net Tracker



Even Better – an actual embedded cellular device

Best – measurement tools



- How customers are deploying cellular OOB:
  - A single gateway device in the data center
  - Cell per device for remote site deployment
  - Cell per device in remote closets
  - Moving antenna vs. moving devices near the window
  - Top/bottom of rack actually makes a difference

- Interface handling
  - Consider how hosts will route to new gateway of the cell router
  - Dormant until needed for OOB
  - Restrict unnecessary chatter across the cell interface
  - Consider QoS control to limit unnecessary traffic
  - Set cell data restrictions via the device
  - Set notifications on over usage on the plan itself

## **Best Practices Summary – Choices**

- Conduct Site Survey
- Educate yourself on the options plans, carriers, routing
- Choose the plan ahead of time hard to change later
- Call the carrier get to know them single point of contact
- Know your international options
- Don't forget budgeting for the monthly costs
- Can you roll into existing monitoring fabrics?
- Make sure your vendor is an expert.....and focused....



Q & A